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Abstract
Local earthquake tomography (LET) offers a valuable criterion for theoretically modelling the earth structure 
involved in seismic activity, through the composite imaging of the various subdivision layers deriving from the 
pertaining space parameterization. The inversion problem relating the velocity field construction to travel time data 
is analyzed within the main theoretical frame of linear solvers: the introduction of a continuous function as Thurber’s 
trilinear interpolator is widely  used as effective algorithm to numerically model the variational sequences of data to 
be processed. The solution of each inversion, iteratively computed on the basis of LSQR methods, is presented in 
terms of resolution matrix. As far as the covariance matrix with reference to modelling errors, ray-tracing 
approximation questions are pointed out as essential features of further research on local linear tomography. 
Ultimately, tomography approaches aimed at identifying natural gas and hydrates in the marine environment whose 
presence is expressed by “bottom simulating reflector” observed in seismic data is treated in the light of AVO 
techniques. Heterogeneity of media and amplitude dependence of signals are not explicitly discussed, though 
advocated.

Introduction
The word tomography is a compound noun deriving its meaning from the Greek roots “tomo” 
(=“slice”) and “graph” (=“image”, “trace”). Tomography is actually a computational technique 
suitable for the observation of the interior of a given structure as perturbative effects interfere 
with its surface: through multiple reconstructions of various subdivision sections a full 
dimensional image of the object in question can be obtained. Namely, if we take a slice of a 
three-dimensional (3-D) object, we get a two-dimensional (2-D) section, and we can reconstruct 
the 3-D image of the object under investigation by combining many of these 2-D slices. 
Similarly, a 2-D section can be constructed from multiple one-dimensional (1-D) line integrals 
that can be measured in an experiment (Lee and Pereira, 1993). In the case the perturbation is 
represented by a wave, velocity fields become the object of any tomographic analysis whose 
data are given on travel times terms, under the ray approximation hypothesis for travel waves. 
In geophysics, seismic tomography is aimed at describing seismic waves velocity field in a 
given region, once the arrival times of shock waves have been recorded. With reference to rays 
approximation models, the velocity field can be evaluated through the integral relation linking 
rays travel times with the unknown field. In particular, the arrival time T of the seismic wave 
generated by an earthquake and recorded by a seismic receiver is described by the following 
equation:
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where To is the origin time of the event, T( ) is the travel time of the ray, S its path from the 
source (hypocenter) to the receiver (station), dS the path segment, and r (x,y,z) the 
unknown velocity field.
Seismic tomography analyses a consistent number of arrival times to provide a 3D description 
of the field = (x,y,z). To be noted that the information content of a single travel time T is 

distributed along the whole line integral path S, whereas the single integral element ds  should 

be considered, limiting the angular distribution of crossing raypaths. Unlike medical X-ray 
tomography, the ray coverage may be not regularly distributed, giving raise to “structure 
illumination” problems. As far as initial-event locations requirements in order to analyse 
portions of earth crust, seismic tomography assigns neither the origin time To a fixed value nor 
the ray path S a defining interval, thus implying an a priori velocity field introduction for their 
estimations with consequent non-linear dependence between data and unknowns (Falcone & 
Beranzone, 1997).
With reference to the arrival times of seismic body wave phases, the travel time Ti of a wave 
along a path Si is the integrated slowness r)-1, already defined in Eq.(0.1):
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which is often reformulated in terms of  with respect to a starting model 0(r):

(0.3)

Invoking Fermat’s principle, second-order terms are neglected and eventually treated as 

modelling errors. Under this assumption, the integration path iS approximation by the slightly 

different path 0

iS is consistent due to the stationary nature of travel times for small changes 

away from 0

iS .

In order to discretize - 0, r) may be developed from the outset in a finite number of 
k at some point in the iterative process as:

(0.4)

k is the weight of an interpolation function hi in the Earth. The interpolation functions
span a basis in the model space (Nolet, 1996). 
A common parameterization is in terms of cells:

= 1 if r is in cell i (0.5)
= 0 elsewhere

leading to unphysical solutions in which the Earth velocity changes block-wise. 
Subdivision refining and a posteriori smoothing images techniques have been adopted to find 
the optimal resolving power for the solution search. Smooth interpolators, such as the trilinear 
interpolation proposed by Thurber (1983) are widely used if the cell size exceeds locally the 
resolution. Dziewonski (1984), Morelli and Dziewonski (1987a) and others prefer to expand the 
Earth’s velocity field into a finite number of fully normalized spherical harmonics with respect 
to depth functions.
In all cases, the parameterization reduces the tomographic problem to a set of linear equations 
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A is generally considered independent of the model according to Fermat’s principle: travel 
times are stationary with respect to small changes in the raypaths (A containing raypaths 
lengths), thus stating the equivalence of a simple starting model for a true Earth description; 
second-order terms are treated as modelling errors.
For a very heterogeneous structure the matrix A may have to be regarded as model dependent 
making the tomography problem a non linear one.

3-D Linear Solvers
The Local Earthquake Tomography (LET) technique is a widely used inversion method first 
introduced by Crosson (1976) and Aki and Lee (1976) further developed by Thurber (1983) and 
modified by Eberhart-Phillips (1986) to include S-wave arrival times. According to its basic 
assumptions, the pα  velocity is modelled through the P-wave arrival times, being P-wave travel 

times determined through three dimensional ray tracing, in the form of approximate 
reconstruction. This analysis permits  the solution to be iteratively determined and, in turn, 
allows the inclusion of lateral heterogeneity velocity structure in the Earth’s crust. The highly 
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nonlinear problem is first solved iteratively through multiple inversions linearized with respect 
to a starting estimate of model parameters, in which initial values of P and S wave arrival times 
are connected to the source location and the medium velocity, and by simultaneously updating 
hypocentral and model parameters, as further step. The velocity model is parameterized using a 
3D mesh, continuously defined by linearly interpolating the values assigned to the grid nodes 
among the surrounding grid points. The difference of P and S wave travel times Tp-Ts is 

commonly inverted to obtain the p

s

α

α
velocity ratio. Accurate 1D and 3D velocity models are 

obtained using LET through the implementation of the widely used SIMULPS numerical code 

for the calculus of p and p

s

α

α
(Thurber, 1983). This software simultaneously solves a direct 

problem pertaining the earthquakes locations as unknown variables once the three-dimensional 
velocity model has been developed from data inversion (inverse problem). 
In analytical terms, a linearized inverse problem may be defined as that of solving the matrix 
equation: 

Gx=b (1.1)

where x∈ nℜ denotes a set of model parameters, b m∈ℜ  denotes the observed data and 

G m n×∈ℜ is the matrix connecting model parameters and observations. In seismic tomography 
the G matrix is generally both very sparse and large, making the solution computationally 
intractable. During the last decade the LSQR method has been applied extensively, implying a 
minimal CPU memory requirement. Through this method the solution of the above equation is 
found in the sense of L2 norm, i. e. least squares. In terms of the generalized inverse (G-g) of G 
the solution may be written as:

$ -g ≡x = G Gx Rx (1.2)

where R m n×∈ℜ  is the model resolution matrix which may be regarded as a linear filter relating 
the true and estimated model parameters. Because of the infinite numbers of generalized 
inverses in a subspace to be least squared, the details of the resolution matrix depend on the 
chosen generalized inverse. For an estimated model parameter, i. e. a cell velocity xi , the 
corresponding diagonal element of R (rij) will be relatively large, whereas off-diagonal elements 
related to xi(rij) may be non-neglegible, but well resolved if spatially close to the cell xi. (Yao et 
al., 1999)
Using Lanczos lower bidiagonalization by Paige & Saunders (1982a), iterations for the updating 
of successive approximated xk  are the same as in the conjugate form due to the property of 
triangular matrices, thus requiring only the most recent columns to be stored, with a sensible 
reduction of CPU memory. Such algorithms always involve data backprojections through 
multiplication with the transpose AT, with reference to (1.2), where AT=A-A. This means that the 
solution is constructed from rows of the matrix A yielding the minimum norm solution, i. e. is 
the vector with smallest length among all the ones that solves (0.6).
Probabilistic methods to locate earthquakes from the inverted velocity field have been 
developed by Lomax et al. (2000, http://www.alomax.net/nlloc) using different algorithms on a 
global scale (Lomax, 2001) and by Waldhauser and Ellsworth (2000) as relative techniques 
based on the comparison between the spatial separation of events and the source-station distance 
in terms of local velocity heterogeneity.
The quality of dataset is a major feature in seismic tomography which may be improved by a 
comprehensive manual phase repicking both for S and P wave arrival times prior to the location 
values and the focal parameters search resulting from the algorithms implementation, within the 
constraints superimposed by the geological knowledge of the area of investigation (Turino &
Scafidi, 2008). The reliability of tomographic imaging is also strictly dependent on mapping 
indicators, such as hit count and derivative weighted sum-DWS in order to assess the spread 
function, and define the image resolution in the various subdivision layers resulting from the 
inversion process.
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Data interpolation
The main features of the simultaneous inversion method have been set forth by Thurber who 
introduced the trilinear smooth interpolator, a continuous function as data fitting algorithm,
which is the product of linear functions in each space dimension, to calculate the velocity at a 
given point (x, y, z), being xi, yj, zk the coordinates of the eight grid points surrounding the point 
(x, y, z):

(2.1)

On the basis of Aki and Lee works, the velocity field representing the earth structure is defined 
at a great number of discrete points and interpolation is performed within the grid boundaries, 
instead of varying blockwise, as previously stated. The inverse problem which is 
overdetermined is solved iteratively through approximate ray tracing. The linearized equation 
for simultaneous inversion relating the arrival time residual r to model parameters may be 
written as:
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for each observed arrival, where eT∆ , ex∆ , ey∆ , ez∆  and 0eα∆ are perturbations to the 

hypocentral parameters (earthquake origin time and locations) and the partial derivatives of the 
arrival time are referred to the earthquake coordinates and velocity parameters, in succession. 
The last differential term can be calculated  given the velocity model  and the ray path from the 
earthquake to the observing station (Thurber, 1983).
On algebraic terms, two different solutions satisfying the experimental data set would imply, 
theoretically, an infinite number of possible other ones. The solution, i. e. the sequence of travel 
times, is determined iteratively, in compliance with the uniqueness requirement, on the basis of
ray tracing schemes. Thurber’s approximation identifies circular arcs of various curvature 
underlying the source to the receiver as ray tracers, in order to estimate the travel time along 
each significant corresponding ray segment through the three dimensional velocity model. Data 
are sequentially assimilated as events are processed in agreement with the continuous behaviour 
of the interpolation function (2.1), whereas lateral evidence, i. e. slabs, is obtained from simple 
variations of the plane containing the arcs (Fig. 1). To be noted that the perturbative terms of the 
seismic source included as hypocentral partial derivatives have been calculated on a variational 
or geometrical argument and eventually neglected upon comparison with the velocity scale 
variations in the model. This initial perturbation, though explicitly determining the inverse 
problem (2.2) is actually accounted for as modelling error within the covariance matrix. 
Damped least squares methods applied to the resolving matrix and related covariance matrix for 
the error approximation minimize the travel time range, thus finding the required solution. 
Calculus is based on the symmetrical property of triangular operators, consistently with the 
trilinearity introduced. Through the velocity field variations, with relative travel times
dependence, earthquakes are individually relocated, i. e. iteratively, in the new model, as 
inversion is simultaneously repeated. Finally, the Fisher’s F test states the stopping point of 
iterations.
From a conceptual view, an improvement of the geometrical tool to linearize, or better, “quasi”-
linearize and numerically model the arrival data would be of major interest to trace the 
variational sequence itself in greater agreement with the initial set, describing heterogeneity of 
minor grade on a proper dimensional scale.
Ray tracing in heterogeneous media requires solving a non-linear ordinary differential equation 
or a system of non–linear ordinary differential equations in the variables of interest, upon 
assumption of initial conditions, i. e. initial position and initial slowness vector. Boundary 
conditions relative to the rays connection between two points, which is a main geophysical 
feature when evaluating arrival times, make the solution search more difficult as under the 
linear assumption. Many formulations exist for the initial value problem, such as the 
Hamiltonian approach related to the eikonal equation and usual solvers as Runge-Kutta or 
predictor-corrector schemes suitable for tracing rays, as well as the finite element method. A 
further step for travel-time tomography with very sophisticated inversion analyses is represented 
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by the diffraction tomography, which considers, in addition, the amplitude among its defining 
parameters.

Tomography approach for gas hydrate investigations
Gas hydrates, or simply hydrates, also referred as clathrate hydrates are a ubiquitous class of 
crystalline inclusion compounds consisting of guest molecules trapped in a lattice of polyhedral 
water cages, physically resembling ice, being water-based solids. Non polar molecules with low 
molecular weight-typically gases-are trapped as guest elements inside hydrogen bonded water 
molecules-host molecules, as well as some higher hydrocarbons and freons may act as guest 
molecules forming hydrates at suitable pressures and temperatures.
Naturally on earth gas hydrates can be found on the seafloor, in ocean sediments, in deep lake 
sediments, e. g. Lake Baikal, and in permafrost regions. Methane is significantly hosted in 
natural hydrate deposits in marine sediments, representing such a relevant carbon reservoir to 
become a dominant factor in estimating unconventional energy resources. Methane hydrate is 
stable in ocean floor sediments at water depths greater than 300 m, cementing loose sediments 
in a surface layer several hundreds meters thick, at occurrence. Additionally, conventional gas 
resources appear to be trapped beneath sedimented methane hydrate layers. Gas-hydrate-
cemented strata also act as seals for trapped free gas, providing potential energy reservoirs, and, 
conversely, their dissociation with subsequent methane release into the atmosphere would be of 
major environmental impact, being methane a strong greenhouse effect gas.
The occurrence of hydrate is often inferred by bottom simulating reflections (BSRs), reflections 
events with reversed polarity featuring the seafloor trend, on seismic reflection profiles: the 
presence of hydrates is commonly expressed by BSRs observed in seismic reflection data. The 
presence of gas hydrates reduces the effective pore space and permeability of sediments by 
filling voids in pore water molecules, thereby increasing the acoustic velocity components. If 
the hydrate layer is underlain by gas or brine-saturarted sediments, seismic velocity drops, and 
BSR signals across the hydrate/free gas interface due to impedance contrast changes in 
transition zones may be observed. It is therefore possible to evaluate seismic three-dimensional 
volumes in terms of hydrate/free gas concentration volumes, by producing informative data 
about their areal distributions, including the methane contents trapped in the sediments, on a 
regional scale through Seismic Reflection Tomography (SRT). Bottom Simulated Reflector 
(BSR) may be actually regarded as a characteristic seismic horizon appearing on marine 
reflection profiles, marking the thermodynamical parameters of the methane-hydrate stability 
field.
On analytical terms, the sequence stratigraphic framework within the region of interest requires 
an additional inversion to quantify the elastic parameters of the BSR interface. Indicators of 
hydrates layers may in fact be inferred from the velocity model discussed in the previous 
sections, requiring a first data inversion, and from amplitude variations of the reflected signals 
with respect to vertical offset changes along the continental margin (further inversion). 
Amplitude Versus Offset (AVO) methodology is an inversion procedure which is often applied 
to analyse velocity fields at the separation BSR interface on the basis of single velocity models 
and relative densities values for the upper and lower layers; geometrical spreading corrections,
realignment of the source-receiver array and picking are also controlled by AVO during the 
amplitude data processing (Grion et al., 1998).
These tomographic techniques based on seismic wave reflections allow the earth’s interior to be 
mapped in order to visualize the sub-surface whose subdivision elements are chosen as box-
grids to be illuminated by seismic rays; the individual character of elements is then physically 
computed and the obtained results are displayed as colour-coded contour mapping of the sub-
surface shear planes (Fig. 2; Fig. 3).
Additionally, computed microtomography (CMT) techniques that utilize an intense X-ray 
synchrotron source to characterize sediment samples, are aimed at producing high-resolution 
data regarding sediment parameters on grain scale which are indicators of the methane hydrate 
behaviour on meso-and-macro scales.

Concluding remarks
The Earth is a mechanical body whose behaviour is complex and depends very strictly on the



time scale that one looks at the earth phenomena and on the characteristic length related to this 
time scale by an appropriate velocity. Seismological data have played an important role for this 
quantification: the velocity field produced by P and S waves, numerically constructed from the 
inversion of arrival times determined through three dimensional ray tracing, constitutes the 
informative data onset suitable at modelling the earth structure involved by seismic activity. The 
resulting image is obtained through multiple reconstruction of the subdivision layers chosen as 
box-grids, i. e. elements of the analysis. Global travel tomography aimed at giving the most 
accurate image of earth crust interiors has been therefore analysed with respect to ray 
approximation schemes, adopted as effective parameters of inversion processes, focusing on the 
widely used Thurber’s trilinear interpolator, including its geometrical implications for the array 
dimensionality requirements. Improvements of the algorithm to minimize the focal separation of 
earthquakes relocation have been emphasized. Inherent analytical questions pertaining the 
solution search, iteratively evaluated through damped least squares methods, are also pointed 
out. Ray tracing in heterogeneous media is just mentioned, whereas lateral heterogeneity is 
implicitly treated on linear terms under the trilinear assumptions already discussed.
Ultimately, on the basis of a renewed interest in the study of natural gas hydrate because of its 
potential impact on world energy resources, control on seafloor stability, significance as a 
drilling hazard, and notable influence on climate as a reservoir of a major greenhouse gas, 
seismic reflection tomography has been described in order to determine the sediments nature 
underlying continental margins. Essential theoretical issues, including BSR analyses on seismic 
data profiles in the light of AVO techniques, have been introduced.
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